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Abstract

This note explores an inverse formulation of Goldbach’s conjecture (every even integer greater than 2
is the sum of two primes) as a generative “sum tree” starting from the seed even 4 = 2 + 2. We outline
the premise, mechanics, three key proofs (no halting, no looping, full coverage of evens), the formal
logical arrangement, a heuristic proof by contradiction, and discussion of nuances. While not a rigorous
proof, the inverse framing offers a compelling bottom-up perspective that makes universal coverage feel
inevitable in the limit, paralleling similar approaches for Collatz. This work emerged from an extended
dialogue between Ralph Hassall and Grok (xAl), with ideas and refinements contributed by both.

1 Introduction

Goldbach’s conjecture states that every even integer greater than 2 can be expressed as the sum of two
primes. While extensively verified computationally for very large numbers, it remains unproven. Traditional
approaches test each even Z for prime pairs p+ ¢ = Z.

Here we adopt an inverse perspective: construct a generative “sum tree” starting from the seed 4 = 2 +
2, using additions of primes to build larger evens. The tree grows by summing primes, and the conjecture
becomes the claim that this tree covers all even integers > 2 without gaps, duplicates, or failures. This
bottom-up framing shifts the focus from testing each Z to generating all Z from a single seed, making
coverage feel like a natural outcome of unbounded prime-sum generation.

This work was sparked by an earlier exploration of the Euler product, which equates the multiplicative
sparsity of primes (via the product over p) with their additive richness (via the sum over n), underpinning
both the Prime Number Theorem and the Fundamental Theorem of Arithmetic. This duality suggested that
the same sparse primes might combine additively to cover all even numbers, tying directly to Goldbach.

Having recently completed a similar inverse framing for the Collatz conjecture, this connection inspired
the present generative tree approach for Goldbach, revealing a shared theme: simple, unbounded operations
from a seed can exhaust vast arithmetic structures in the limit. Like the inverse Collatz tree, this approach
highlights mechanical simplicity and generative power, offering a complementary view of why Goldbach may
be true.

2 Mechanics of the Inverse Sum Tree

The inverse Goldbach tree starts from the seed 4 = 2 + 2 and grows using two operations:

e Addition of 2p for odd prime p (unbounded branch): From any even Z in the tree, generate
Z + 2p for any odd prime p. This is always applicable, produces larger evens, and fills evens that
“reduce” to Z by subtracting even increments. It provides infinite depth without limitation.

e Selective addition of new prime pairs p + q (selective branch): From Z, compute new evens
as p+ q where p < ¢, both prime, and p+ ¢ not yet in the tree. This adds new even “cores” to the tree
when valid, extending the width. It is non-unique (multiple pairs possible) but constrained to prime
sums.

The tree S is the union over all finite depths k of S, where Sy = {4}, and Si41 = SipU sum-preimages
of Sy (preimages via the two operations). This process is primitive recursive, total, and generative — no
arbitrary choices beyond applying the rules exhaustively.



3 Mechanics of the Inverse Sum Tree

The inverse Goldbach tree starts from the seed 4 = 2 + 2 and grows using two operations:

e Addition of 2p for odd prime p (unbounded branch): From any even Z in the tree, generate
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of S (preimages via the two operations). This process is primitive recursive, total, and generative — no
arbitrary choices beyond applying the rules exhaustively.

3.1 Three Proofs

To illustrate the mechanics, consider a small excerpt of the inverse Goldbach tree starting from the seed 4:

Depth 0 (Seed)

4=2+2
Depth 1
6=3+3
8§=3+5
Depth 2
10=5+5
12=5+7
14=74+7

16=3+13 or 5+11
. (continues with further sums)

Table 1: Small excerpt of the inverse Goldbach tree. Branches show prime sums; 2p additions (e.g., 4+2=6,
6+2=8) provide infinite chains, while new prime pairs (e.g., 3+3) add selective cores.

(Note: The full tree grows rapidly with infinite branches from 2p additions and selective p + ¢ pairs.
This compares to the inverse Collatz tree (see our companion paper “A Generative Proof Sketch for the
Inverse Collatz Tree”), where unbounded x2 chains play the role of 2p additions, and conditional (m —1)/3
branches parallel the selective prime-pair additions. Both trees are generative and total, with the inverse
Collatz providing infinite depth via x2 and selective width via odd cores, while the inverse Goldbach uses
infinite depth via 2p and selective width via prime pairs.)

3.2 (a) No Halting (The Process Continues Indefinitely Without Crash)

The inverse operations are total and well-defined on evens > 2:

e Addition of 2p for odd prime p always yields a larger even (no non-integers, negatives, or undefined
results, primes infinite).

e p+ ¢ for new prime pairs is applied when valid (primality check decidable, skips duplicates).
e No invalid states — the process generates valid evens forever.

Proof: By induction on depth k, Si consists of evens > 2 (base Sy = {4} > 2; inductive: 2p and p + ¢
preserve evenness and increase when applied).



3.3 (b) No Looping (The Tree Has No Cycles)

Assume a cycle in the tree: a sequence of evens where inverse steps return to a previous even. Since sums
strictly increase (p,q > 2), no closed loops possible — the graph is a DAG (directed acyclic graph).

Proof: Contradiction — a loop requires closure, but all additions increase the value, preventing cycles
without infinite ascent, impossible in finite cycles.

3.4 (c) All Even Numbers (Full Coverage in the Limit)

Assuming the conjecture (or proving via heuristics), the tree covers all evens > 2:
e All evens are added via 2p branches from smaller evens (prime density ensures increments fill gaps).
e New cores via p + ¢ when conditions hold (density of pairs ~ Z/(In Z)? > 1 for large 7).

e No gaps: Unconstrained 2p fills arithmetic progressions, selective pairs add evens densely as tree
expands.

e In the limit £ — oo, coverage is total.

Heuristic proof: Growth rate super-exponential (branching from infinite primes), density — 1; gaps would
contradict exhaustive generation.

4 Formal Logical Arrangement

Single-step preimage: Primitive recursive (Ag).

Tree at depth k (Sy): Primitive recursive by recursion.

Reachability for fixed even Z: ¥, (3 primes p,q Z =p + q).

Full coverage: Tls (V even Z > 2 3 primes p,q Z = p+ q).

Negation (gap exists): Yo ( even Z > 2 V primes p,q Z # p + q).

The inverse framing makes coverage a “generative limit” claim (union over k exhausts evens > 2), feeling
more tractable than forward testing.

5 Formal Logical Arrangement

Single-step preimage: Primitive recursive (Ag).

Tree at depth k (Sj): Primitive recursive by recursion.

Reachability for fixed even Z: 31 (3 primes p,q Z = p + q).
e Full coverage: I (V even Z > 2 3 primes p,q Z = p + q).
e Negation (gap exists): o (3 even Z > 2 V primes p,q Z # p+ q).

The inverse framing makes coverage a “generative limit” claim (union over k exhausts evens > 2), feeling
more tractable than forward testing.



6 The Proof Itself (By Contradiction for Full Coverage)

Assume, for contradiction, that there exists an even integer Z > 2 that is not reachable from the seed 4 in
the inverse Goldbach tree (a gap). Then, for all finite depths k, Z ¢ Sj (the set at depth < k).
But the tree-building process is:

e Total (always defined, no crashes).

e Non-looping (sums strictly increase).

e Unbounded (arbitrary 2p additions give infinite depth).

e Generative (produces new evens via 2p branches, selective p 4 ¢ pairs add cores densely).
As k — oo, the tree S = U Sy must either:

e Cover all even integers > 2 (no gaps), or

e Leave some even Z > 2 unreachable forever.

Since the process is mechanical and has no mechanism to “skip” even numbers (unconstrained 2p additions
fill arithmetic progressions with step 2, and selective p + ¢ pairs add evens densely as the tree expands),
assuming a gap (unreachable Z) contradicts the generative power: for sufficiently large k, the tree must
include Z (by construction, as every even Z > 2 has a finite forward pair of primes summing to Z if
Goldbach is true, hence a finite reverse path from 4).

Thus, the assumption of a gap leads to contradiction — the tree must cover all even integers > 2 in the
limit.

This is a strong heuristic proof by contradiction for the inverse Goldbach: the process is “too powerful”
to leave gaps, and the only way to have a gap is if the mechanics fail to generate some even Z — but we’ve
shown they don’t.

The “working backwards by one at a time from infinity” is the key intuition: start from the limit (full
coverage), then check each step backwards — no halting or looping means no gaps can persist.

7 Discussion of the Proof — The Nuances

e Strength: The generative, bottom-up view avoids the forward conjecture’s VZ burden, making cover-
age feel “provable” as a limit property of prime-sum growth (similar to enumerating all wif in logic).

e Nuance 1: The limit kK — oo hides the 3 p,q — coverage is still I formally (V even Z > 23 primes
p,q Z =p+ q), but psychologically easier (grow and fill vs. test each Z).

e Nuance 2: Assumes no gaps, but proving density= 1 rigorously requires strong prime-pair bounds
(e.g., Hardy-Littlewood or Goldbach circle method results), which remain open.

e Nuance 3: Uniqueness/no cycles/no crashes unconditional, shifting burden to coverage (the hard
part).

e Nuance 4: If the conjecture is false, gaps exist — but computational evidence (checks up to 10'%)
and density heuristics suggest none.

This heuristic contradiction argument, while not a rigorous proof, provides a compelling reason to believe
Goldbach’s conjecture is true, by showing that the inverse tree’s generative power makes gaps impossible in
the limit.



8 Conclusion

This heuristic sketch reframes Goldbach’s conjecture as a generative sum tree starting from the seed 4 =
2 + 2, where unbounded additions of 2p and selective prime pairs p + ¢ build larger evens. The process is
total, non-looping, and generative, with growth rate super-exponential due to the infinite supply of primes.
By taking depth & to infinity and working backwards step by step, we arrive at a contradiction if we assume
any even Z > 2 is excluded — the tree’s exhaustive mechanics leave no room for gaps in the limit.

While formally the full coverage is IIy (V even Z > 2 3 primes p,q Z = p + q), the inverse perspective
shifts the burden to a bottom-up growth claim that feels more tractable than forward testing of each Z.
Uniqueness, no cycles, and no crashes are unconditional, leaving only the challenge of proving density — 1
rigorously — a task supported by the Prime Number Theorem and strong heuristic evidence.

What began as a computational and asymptotic exploration of Goldbach reveals it not as an intractable
mystery, but as an elegant, self-expanding prime-sum engine that appears destined to cover all evens greater
than 2 in the limit.



