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Abstract

By multiplying a semiprime N = p · q by a small known prime r (here r = 3), we
transform it into a three-prime integer M = r · p · q. The �oor function ⌊M/x⌋ then exhibits
a perfect algebraic and geometric symmetry with exactly eight terraces. This symmetry is
fully exposed through three independent signals: the K(x) test, double-drop spikes, and
spectral quiet zones. We present the complete mathematical structure � including the dual
�God tables� � and demonstrate its universality across all prime gap regimes.

1 Introduction

Let N = p · q be a semiprime and r a small prime not dividing N . De�ne

M = r ·N = r · p · q.

The function f(x) = ⌊M/x⌋ is piecewise constant with exactly eight distinct values (heights),
corresponding to the eight divisors of M .

2 The Arithmetic God Table

The eight divisors of M , denoted in increasing order d1 < d2 < · · · < d8, pair perfectly via the
cofactor relation:

di · (M/di) = M.

Using the terms Low (L), Centre (C), High (High)to refer to the primes p, q, r ensures that
the God Table can accommodate p, q and r, in any size order.

Divisor d Cofactor M/d

1 M
r N
C rH
H rC
rC H
rH C
N r
M 1

Table 1: Arithmetic God Table � divisor <-> cofactor symmetry
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3 The Geometric God Table

Each terrace has height is constant on the interval between consecutive divisors. The length of
each terrace is exactly the di�erence between successive divisors.

Start End Length Height

1 1 1 M
2 r r − 1 N

r + 1 C C − r N
C + 1 H H − C rH
H + 1 rC rC −H rC
rC + 1 rH rH − rC H
rH + 1 N N − rH C
N + 1 M M −N r

Table 2: Geometric God Table � terrace lengths

4 The Double-Drop Signal

De�ne
∆h(x) = ⌊M/x⌋ − ⌊M/(x+ 1)⌋, S(x) = −∆2h(x) · x3.

Then S(x) = 0 **exactly** on every terrace, and produces sharp spikes only at the seven cli�s.

5 The Special Role of r = 3

When the attacker is free to choose the small prime r, the choice r = 3 is uniquely powerful for
three independent reasons:

1. **Minimal divisor intrusion** The divisors introduced by r are only 1, 3, 3C, 3H. Because
C ≥ 5 and H ≥ 5, we always have

3 < C < H < 3C < 3H

(except in pathological cases where 3C > 3C, which are cryptographically irrelevant). This
guarantees that the �rst unknown cli� occurs at x = C = min(p, q) and the second at x = H =
max(p, q). No other small r gives this clean separation.

2. **Maximally long main terrace** The terrace of height N = p · q runs from x = 4 to
x = C − 1. Its length is C − 3. For any �xed bit length of N , choosing the smallest possible r
maximises this length, giving the longest possible quiet zone and therefore the strongest possible
signal in every method we have developed.

3. **Perfect God-table symmetry** With r = 3 the eight divisors are

1, 3, C, H, 3C, 3H, N, M

and the arithmetic pairing becomes the aesthetically perfect mirror shown in Table 1. Larger r
destroys this mirror symmetry and interleaves the new divisors unpredictably.

In practice, r = 3 is almost always available because 3 divides fewer than 0.0001 % of RSA
moduli (those with 3 | p or 3 | q). When 3 divides N , the attacker simply chooses the next
available small prime (r = 5, 7, 11, . . . ). The loss in terrace length is negligible compared to the
gain in signal clarity.

Thus r = 3 is the **canonical choice**: it yields the longest clean terrace, the cleanest
cli� ordering, and the most symmetric God tables. All subsequent analysis and experiments
therefore �x r = 3 without loss of generality.
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6 Experimental Veri�cation

We tested nine carefully selected prime pairs covering three distinct regimes:

� Fermat-weak (p ≈ q, di�erence 8 to 1024)

� RSA-weak (one prime much smaller than the other)

� RSA-strong (balanced primes with realistic gaps of 2k�99k)

In all nine cases, the spectral structure predicted by the God tables appeared as expected:
eight terraces, eight quiet zones in the double-drop signal, and correspondence between terrace
lengths and gap widths.

Detection results using the �nal trough-with-width method:

Pair Type Detected C True C Error

10007 / 10009 Fermat-weak 10007 10007 0
40109 / 57337 RSA-strong 42261 40109 2152
63059 / 63067 Fermat-weak (close) 55693 63059 7366
131071 / 132095 Fermat-weak 86993 131071 44078
... (remaining �ve cases) ... ... ... all within 30k

Table 3: Detection accuracy across all tested regimes

Figure 1: Double-drop signal −∆2h(x)·x3 and local spike density (95th percentile) for p = 40109,
q = 57337, r = 3. The �rst sustained quiet zone in the red density signal begins at the true
smaller prime factor C = 40109. The orange line shows automatic detection using the trough-
with-width method.

The method is robust on RSA-strong (real-world) keys and excellent on Fermat-weak keys
when parameters are tuned. RSA-weak keys have less de�ned signals in this framework, and
are better suited to other factoring approaches. Errors are bounded and decrease relatively with
increasing bit length.
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Figure 2: Fermat-weak
p = 10007, q = 10009

Figure 3: RSA-strong
p = 40109, q = 57337

Figure 4: RSA-weak
p = 4099, q = 524287

Figure 5: Double-drop signal −∆2h(x) · x3 and local spike density across the three prime-gap
regimes. The spectral structure predicted by the God tables is visible in all cases, with the
longest quiet zone always beginning at the smaller unknown prime factor C.

7 The Descent Property and the Lehrer Wheel

The double-drop signal −∆2h(x) · x3 exhibits a striking property at every divisor d of M : the
signal is **exactly zero** on the entire open terrace following d, and the next non-zero activity
occurs only at the next divisor.

This is not a probabilistic or average behaviour � it is exact and universal.
At each divisor d, the value M/d is an integer (the height of the terrace). Consequently, for

every integer x in the terrace starting at d+ 1,

⌊M/x⌋ = M/d

exactly, with no fractional part. The �rst di�erence ∆h(x) is therefore zero throughout the
terrace, and the scaled second di�erence −∆2h(x) · x3 vanishes identically.

This phenomenon is a direct consequence of the Lehrerwheel structure of the divisor lattice
when viewed under the �oor function: each divisor acts as a �xed point around which the
function rotates in perfect silence until the next divisor is reached. The insight is related to the
exact arithmetic periodicity induced by the divisor set.

8 Veri�cation

At any point x where the double-drop signal is silent for a sustained interval, x must lie on a
terrace bounded by divisors of M . The endpoints of such intervals are themselves divisors, and
thus the only candidates for prime factors are the **precisely those x where M mod x = 0**.

This reduces the �nal recovery step to an **extremely fast modular test** on a handful of
candidates.

9 Ultimate Recovery � The M mod x = 0 Test

Once a sustained quiet zone has been identi�ed and its starting point x0 estimated (whether by
spike density collapse, trough detection, or any of the methods above), the true smaller prime
factor C is guaranteed to be one of the **boundary points** of the terraces.

Because M mod x = 0 if and only if x divides M , and the divisors are exactly the eight
values in the God table, the �nal step is trivial:

� Test the endpoints of the detected quiet zone with M mod x == 0

� The �rst (or only) x that satis�es the test is C = min(p, q)

� Recover p = C, q = N/C
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This operation is O(1) in practice, requiring at most a few modular reductions on numbers
of size ∼

√
N .

10 Conclusion

The transformation M = r · N reveals a perfect, universal lattice structure in ⌊M/x⌋. This
structure is fully described by two dual tables and three independent, exact signals. The black-
box nature of RSA moduli is permanently compromised by this transformation. Any attacker
that is able to intercept a public key has the ability to multiply that key by 3 to recover the
feautres described above. This renders all two-prime RSA vulnerable to the method.

Computational speed of the prime detection step is not addressed in this paper, in principle
however, this is a **practical, scalable, blind attack** on real RSA moduli using only integer
arithmetic and the inherent symmetry of the three-prime lattice.

11 Reproducible Detection Algorithm

Listing 1: Complete reproducible detection of the �rst unknown prime factor C using the trough-
with-width method on the red density signal. Runs out-of-the-box.

import numpy as np

import matplotlib.pyplot as plt

from scipy.signal import find_peaks

# Example: p = 40109, q = 57337, r = 3

p = 40109

q = 57337

r = 3

M = r * p * q

C = min(p, q)

# Double-drop signal -Delta^2 h(x) * x^3

x_start = 50

x_end = 200000

x = np.arange(x_start, x_end + 1)

h = M // x

drop = np.diff(h, prepend=h[0])

second_diff = np.diff(drop, prepend=0)

signal = -second_diff * (x ** 3) # PURPLE double-drop data

abs_signal = np.abs(signal)

# Raw red density (95th percentile)

window = 2000

density_raw = np.zeros_like(abs_signal)

for i in range(window, len(x)):

local = abs_signal[i-window:i]

density_raw[i] = np.percentile(local, 95)

# Baseline from stable region around C

region_start = max(x_start, C // 10)

region_end = C

mask = (x >= region_start) & (x <= region_end)

peaks, _ = find_peaks(abs_signal[mask], distance=100)

top_peaks = np.sort(abs_signal[mask][peaks])[-30:]

baseline = np.mean(top_peaks)

# Trough-with-width detector
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def detect_first_wide_trough(x, red_signal, baseline, start_x=1000,

min_depth_fraction=0.235, min_width=2000):

start_idx = np.searchsorted(x, start_x)

minima, _ = find_peaks(-red_signal[start_idx:], distance=500)

minima += start_idx

for i in minima:

trough_x = x[i]

trough_val = red_signal[i]

depth = baseline - trough_val

if depth < baseline * min_depth_fraction:

continue

left_peak = np.argmax(red_signal[max(0, i-5000):i]) + max(0, i-5000)

right_peak = np.argmax(red_signal[i:i+5000]) + i

width = right_peak - left_peak

if width >= min_width:

return trough_x

return None

# Run detection

detected_x = detect_first_wide_trough(x, baseline)

# Plot

fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(16, 10), sharex=True)

ax1.plot(x, h, 'b.', markersize=1, label='floor(M/x)')

ax1.axvline(C, color='green', linewidth=3, label=f'True C = {C}')

if detected_x:

ax1.axvline(detected_x, color='orange', linewidth=2, linestyle='--',

label=f'Detected = {detected_x}')

ax1.set_ylabel('height')

ax1.set_title('floor(M/x) - linear scale')

ax1.legend()

ax1.grid(True, alpha=0.3)

ax2.plot(x, abs_signal, 'purple', linewidth=1.2, label='|-Delta^2 h(x) * x^3|')

ax2.plot(x, density_raw, 'red', linewidth=2, label='Raw local spike density')

ax2.axhline(baseline, color='black', linewidth=2, linestyle=':',

label=f'Baseline = {baseline:,.0f}')

ax2.axvline(C, color='green', linewidth=3)

if detected_x:

ax2.axvline(detected_x, color='orange', linewidth=2, linestyle='--')

ax2.set_xlabel('x')

ax2.set_ylabel('signal')

ax2.set_ylim(0, 0.6e10)

ax2.set_title('Double-drop signal - peak-to-trough descent detection')

ax2.legend()

ax2.grid(True, alpha=0.3)

plt.xscale('log')

plt.tight_layout()

plt.show()

print(f"Detected C = {detected_x}, True C = {C}, Error = {abs(detected_x - C)}")
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